LECTURE- 24
Distributed Shared Memory



W
Shared Memory

We have already seen some kinds of shared memory
mechanisms

» shared memory symmetric multiprocessors:
- all memory is shared and equidistant from processors
> caching is used for performance
There are also other kinds of shared memory approaches
 NUMA (non-uniform memory access) machines

> each machine has its own memory but the hardware allows
accessing remote memory

o remote addresses are no different than local accesses at
the assembly level

° access to remote memory is much slower

> no hardware caching occurs (but the software may do
caching)




Why Distributed Shared Memory

 collaborative or concurrent applications use two
main mechanisms to communicate or synchronize:
message passing (send/receive) or shared
memory

 to port these apps to systems without physical
shared memory, you need support for DSM

> need this for scaling across multiple disjoint
systems/nodes (supercomputers, MPP are too
costly)

° even some many core systems don’t have
uniform memory access from all cores

> need to take advantage of RDMA mechanisms



Distributed Shared Memory

» objectives: minimize latency and keep
coherent

 software presents the abstraction of shared
memory

» either an OS or a language run-time
manages the shared memory

» there are many different DSM granularities

> page-based DSM: like regular virtual memory (e.g.,
Clouds here at Tech!)

- shared-variable DSM and object-based DSM:
managed by a language run-time system




w
Implementation

» Think of how you would implement such a
“virtual” shared memory among workstations

- Software: at the OS level for unsuspecting processes
how can this be done efficiently?

- Software: at a language runtime level (e.g., Java VM)
how can it be done without hardware support?

- Hardware level support

most efficient, but costly; many exotic interconnects have some
support (Quadrics, Infiniband...)

> Hybrid




Granularity of sharing

o cache/bus line -> overkill in distributed
environments

» page-based
 object-based -> typically
language/runtime support



Granularity tradeoffs

» finer granularity

° Improve concurrency, increase communication
and frequency of execution of consistency
related protocols

e coarser granularity

o limit concurrency (especially is single writer only),
reduce comm/consistency protocols

> Issue with false sharing

may be able to reduce with careful layout of data
structures, hard if implemented at system/hardware level



Objective: Reduce Latency

» Approach:
> migration

migrate shared unit (page, object, etc.) to node
which has current access -> need state to
determine current location

> replication
keep multiple copies -> need per shared unit

state for keeping track of replicas, and types of
access at each replica



Access Algorithm

e Single Reader — Single Writer
> simplest, migration can suffice, not very efficient
» Multiple Readers — Single Writer

> more general, need to track current/most recent
writer (aka owner)

o Multiple Readers — Multiple Writers

° maximum concurrency, need to resolve write
conflicts through consistency protocols



DSM vs. other shared memory
mechanisms

» We have seen simple cache consistency mechanisms in two
different settings:

- SMPs (snooping caches, shared bus, write-update or write-
Invalidate protocols, write buffers, etc.)

o distributed file systems (client or server-based protocols, leases,
Invalidation, delayed writes)

» Similar mechanisms apply to DSM, but they have to be more
sophisticated

- DSM will be used for synchronization and inter-process
communication

DSM has to be very fast
comparable in speed to memory, not to a file system
caching is paramount

no central resources exist (like a bus we can snoop on or lock it
cheaply)

o

(0]

o

(0]




Page-based DSM

» The issues in implementing DSM are similar to what
we have seen so far, but some complications arise In
the page-based case

> which is the most common case for getting DSM
running on machines with no shared memory
support in hardware (e.g., workstations over
ethernet)

» Pages are coarse grained—false sharing may occur
o extra invalidations in a write-invalidate protocol

> possibly overwriting other data in a write-update
protocol

» Realistically, write-invalidate is the only option for
page-based DSM

- hard to do updates on every write: protection is at
page granularity



Coherence Policy

e Write update
> allows multiple readers and writers
> multicast message to update peer copies

o processes have to agree on a total order for
multicast writes for SC

e write invalidate

- multiple readers, single writer
first invalidate peers
write to local cache
subsequent reads will get this new value



Write-invalidate protocol

Not particularly exciting—usually straightforward
and exactly what you would expect

Interesting point: the “owner” of a page can be
changing (e.g., can be the last writer to the page)

The owner is responsible for blocking “writes” until
all outstanding copies have been invalidated

How to find the owner?
o directories
o distributed directories (statically or dynamically)

> hints (probable owner, owner links, and periodic
broadcasts so that all processors know a recent
owner)



Synchronization

e Strict synchronization (e.g., mutual
exclusion) can be too costly in DSM

> spinlocks are a disaster as they require
transferring pages only to find out that the
lock is still busy
» A centralized synchronization
manager may exist



Emple Implementation
Techniques

« DSM mapped to same VA on all nodes
kernels at individual nodes responsible for page level protection
page states: none, read-only, read-write
two data structures:
> owner(P): last writer of page P
> copyset(P): current sharers for P
* home node (also called manager node)
> where directory info for a page is kept

> m nodes and N pages, distribute the work, i.e each node
responsible for m/N pages

° given a page, you can get the home node
e owner node

° the node that has write permission for a page, at any given
time




ASSIGNMENT
» Q: Explain page based DSM.



