
LECTURE- 24

Distributed Shared Memory

Distributed Operating System

Shared Memory

We have already seen some kinds of shared memory
mechanisms

 shared memory symmetric multiprocessors:

◦ all memory is shared and equidistant from processors

◦ caching is used for performance

There are also other kinds of shared memory approaches

 NUMA (non-uniform memory access) machines

◦ each machine has its own memory but the hardware allows
accessing remote memory

◦ remote addresses are no different than local accesses at
the assembly level

◦ access to remote memory is much slower

◦ no hardware caching occurs (but the software may do
caching) Distributed Operating System

Why Distributed Shared Memory

 collaborative or concurrent applications use two
main mechanisms to communicate or synchronize:
message passing (send/receive) or shared
memory

 to port these apps to systems without physical
shared memory, you need support for DSM

◦ need this for scaling across multiple disjoint
systems/nodes (supercomputers, MPP are too
costly)

◦ even some many core systems don’t have
uniform memory access from all cores

◦ need to take advantage of RDMA mechanisms

Distributed Operating System

Distributed Shared Memory

 objectives: minimize latency and keep

coherent

 software presents the abstraction of shared

memory

 either an OS or a language run-time

manages the shared memory

 there are many different DSM granularities

◦ page-based DSM: like regular virtual memory (e.g.,

Clouds here at Tech!)

◦ shared-variable DSM and object-based DSM:

managed by a language run-time system

Distributed Operating System

Implementation

 Think of how you would implement such a

“virtual” shared memory among workstations

◦ Software: at the OS level for unsuspecting processes

 how can this be done efficiently?

◦ Software: at a language runtime level (e.g., Java VM)

 how can it be done without hardware support?

◦ Hardware level support

 most efficient, but costly; many exotic interconnects have some

support (Quadrics, Infiniband…)

◦ Hybrid

Distributed Operating System

Granularity of sharing

 cache/bus line -> overkill in distributed

environments

 page-based

 object-based -> typically

language/runtime support

Distributed Operating System

Granularity tradeoffs

 finer granularity

◦ improve concurrency, increase communication

and frequency of execution of consistency

related protocols

 coarser granularity

◦ limit concurrency (especially is single writer only),

reduce comm/consistency protocols

◦ issue with false sharing

 may be able to reduce with careful layout of data

structures, hard if implemented at system/hardware level

Distributed Operating System

Objective: Reduce Latency

 Approach:

◦ migration

 migrate shared unit (page, object, etc.) to node

which has current access -> need state to

determine current location

◦ replication

 keep multiple copies -> need per shared unit

state for keeping track of replicas, and types of

access at each replica

Distributed Operating System

Access Algorithm

 Single Reader – Single Writer

◦ simplest, migration can suffice, not very efficient

 Multiple Readers – Single Writer

◦ more general, need to track current/most recent

writer (aka owner)

 Multiple Readers – Multiple Writers

◦ maximum concurrency, need to resolve write

conflicts through consistency protocols

Distributed Operating System

DSM vs. other shared memory

mechanisms
 We have seen simple cache consistency mechanisms in two

different settings:

◦ SMPs (snooping caches, shared bus, write-update or write-
invalidate protocols, write buffers, etc.)

◦ distributed file systems (client or server-based protocols, leases,
invalidation, delayed writes)

 Similar mechanisms apply to DSM, but they have to be more
sophisticated

◦ DSM will be used for synchronization and inter-process
communication

◦ DSM has to be very fast

◦ comparable in speed to memory, not to a file system

◦ caching is paramount

◦ no central resources exist (like a bus we can snoop on or lock it
cheaply) Distributed Operating System

Page-based DSM

 The issues in implementing DSM are similar to what
we have seen so far, but some complications arise in
the page-based case

◦ which is the most common case for getting DSM
running on machines with no shared memory
support in hardware (e.g., workstations over
ethernet)

 Pages are coarse grained—false sharing may occur

◦ extra invalidations in a write-invalidate protocol

◦ possibly overwriting other data in a write-update
protocol

 Realistically, write-invalidate is the only option for
page-based DSM

◦ hard to do updates on every write: protection is at
page granularity Distributed Operating System

Coherence Policy

 write update

◦ allows multiple readers and writers

◦ multicast message to update peer copies

◦ processes have to agree on a total order for
multicast writes for SC

 write invalidate

◦ multiple readers, single writer
 first invalidate peers

 write to local cache

 subsequent reads will get this new value

Distributed Operating System

Write-invalidate protocol

 Not particularly exciting—usually straightforward
and exactly what you would expect

 Interesting point: the “owner” of a page can be
changing (e.g., can be the last writer to the page)

 The owner is responsible for blocking “writes” until
all outstanding copies have been invalidated

 How to find the owner?

◦ directories

◦ distributed directories (statically or dynamically)

◦ hints (probable owner, owner links, and periodic
broadcasts so that all processors know a recent
owner)

Distributed Operating System

Synchronization

 Strict synchronization (e.g., mutual

exclusion) can be too costly in DSM

◦ spinlocks are a disaster as they require

transferring pages only to find out that the

lock is still busy

 A centralized synchronization

manager may exist

Distributed Operating System

Sample Implementation

Techniques
 DSM mapped to same VA on all nodes

 kernels at individual nodes responsible for page level protection

 page states: none, read-only, read-write

 two data structures:

◦ owner(P): last writer of page P

◦ copyset(P): current sharers for P

 home node (also called manager node)

◦ where directory info for a page is kept

◦ m nodes and N pages, distribute the work, i.e each node
responsible for m/N pages

◦ given a page, you can get the home node

 owner node

◦ the node that has write permission for a page, at any given
time Distributed Operating System

ASSIGNMENT

 Q: Explain page based DSM.

Distributed Operating System

